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Abstract

Two new finite-difference methods are developed for the

calculation of parabolic partial differential equations. The

leading truncation error terms are derived and detailed com-

U parisons are made with the errors associated with existing

methods, namely the Crank-Nicolson method and Keller Box scheme.

A number of examles for both linear and non-linear parabolic

• -problems are computed with both the new and also the existing

methods. The accuracy of all four methods are compared; based

- 'on the computational experiments and a comparison of the mag-

nitudes of the leading truncation errors, it is concluded that

* . the improved methods are to be preferred over the existing

methods.a
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I. INTRODUCTION

Parabolic partial differential equations arise frequently in

engineering applications particularly in problems involving

boundary-layer flows, heat conduction and mass diffusion. Finite-

difference methods are frequently used to solve such equations

numerically, especially in situations where an analytical solu-

tion is not readily available. Finite-difference techniques for

parabolic equations may be divided into two categories, namely

explicit and implicit methods. Both types of techniques are

discussed by Smith (1978) in the context of the unsteady one-

dimensional heat conduction equation and in this case the follow-

ing results apply:

(1) Explicit methods lead to relatively simple computational

algorithms but in order to obtain an accurate and

stable numerical scheme, severe restrictions on the

mesh sizes are usually necessary.

K (2) These restrictions can often require very small mesh

sizes and this can lead to excessively long computation

times.

(3) Implicit methods normally do not suffer from stability

problems and mesh size restrictions are not necessary

to achieve numerical stability.



(4) Of the implicit schemes considered by Smith (1978),

the Crank-Nicolson method, which is based upon approx-

imating the heat conduction equation at the midpoint

* of two successive time planes, is preferred since it

is second order accurate in both time and space.

* Although these results apply strictly only to the one-dimensional

unsteady heat conduction equation, experience suggests that they

are representative of parabolic problems in general and in par-

ticular carry over to the non-linear case. For example, Raetz

(1953), and Wu (1962) have considered the application of explicit

methods for the laminar boundary layer equations and find that

mesh size restrictions are necessary for the numerical scheme

to be stable. Implicit methods have performed very well in the

non-linear case and many modern laminar boundary-layer prediction

methods, for example, use difference equations based on the Crank-

Nicolson approach.

Another finite-difference technique has recently been sug-

gested by Keller (1970) for parabolic differential equations.

In general, for parabolic equations, there is a spatial direction

in which the boundary conditions are assigned and a marching

direction in which the solution is constructed in a step-by-step

manner. In the so-called 'Keller Box' method, the governing

-2-
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equations are written as a system of first order eications and

central difference approximations are made at points midway

between the spatial mesh points. One major advantage of this

technique is that unlike the Crank-Nicolson method non-uniform

mesh sizes in the spatial direction may be used. This method

and the Crank-Nicolson method will be described in detail in

Chapter 2.

The Crank-Nicolson scheme and Keller Box scheme may easily

be used with non-linear parabolic partial differential equations.

The main difference in the non-linear case is that once the dif-

ference approximations are made ,the difference equations are non-

linear and cannot, in general, be solved immediately by direct

elimination methods. In order to overcome this difficulty the

difference equations must be linearized in some manner at each

stage in a general iterative procedure and at each station in the march-

ing direction; there are at least two ways in which this can be

carried out. In Picard iteration, the non-linear terms are

linearized by guessing selected terms from either the solution

at the previous station or from the solution at the last itera-

tion. This method is relatively easy to implement and if the

terms being linearized are chosen carefully, then convergence

will normally result. However, the rate of convergence may be

slow and can often be accelerated by an alternative linearization

-3-



technique known as Newton linearization; in this procedure, the

solution at any step is rewritten as a combination of the unknown

exact solution plus a perturbation quantity. Upon substitution

into the non-linear difference equations and neglect of the terms

which are quadratic in the perturbation, a set of linear differ-

ence equations is obtained; these equations may then be solved

by a direct method such as Thomas Algorithm. In practice, an

estimate of the exact solution is obtained by using the solution

at the previous step or from last iteration. This method is

more difficult to implement than Picard iteration but has the

ultimate advantage that the convergence rate at each station -

is quadratic.

The principle difference between the Crank-Nicolson method,

the Keller Box method and the two other approaches developed

here is associated with the method of spatial differencing. In

the Crank-Nicolson method,the spatial difference approximations

are based on the classical central difference approximations

for ordinary differential equations of boundary value type (see

for example Fox, 1957); on the other hand, the Keller Box

method is based on an alternative differencing scheme given by

Keller (1969) for ordinary differential equations of theboundary

value type. In a recent paper Walker and Weigand (1979) have

described a simple finite-difference technique for ordinary

I



differential equations which is shown to produce more accurate

results than either the classical method or the Keller (1969)

method. The objective of the present investigation is to adapt

the spatial differencing scheme of Walker and Weigand (1979) to

solve parabolic partial difference equations. The plan of this

report is as follows. In Chapter 2, the Crank-Nicolson method

and Keller Box method are discussed in connection with linear

- parabolic partial differential equations; modifications of these

schemes for the non-linear case are also discussed in Chapter 5.

Two new methods are developed in Chapter 3 for linear problems

and the modifications for non-linear equations are discussed

in Chapter 5. In Chapters 4 and 5 the various methods forthe linear

and non-linear cases respectively, are compared by using various

mesh lengths for a number of example problems. Based on the

truncation error terms given in Chapter 2, 3 and the computational

experiments of Chapters 4 and 5,lt is concluded that the present

3 methods are to be preferred over the existing methods.

-5-
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2. EXISTING METHODS

2.1 The Crank-Nicolson Method

Parabolic second order partial differential equations

are usually of the form,

Q 2U 2U + U
ax 3U ay+ Ru + F, (2.1)

where x and y are two independent variables. The equation is

linear when the coefficients QP,R, and F are constant or

functions of x and y only. If the coefficients are functions
u au

- of xy, u, au y, the equation is non-linear but is usually

described as being quasi-linear since the non-linearity is not

associated with the most highly differentiated terms.

There are two popular methods currently available to solve

equation (2.1). The first of these is the Crank-Nicolson

-.. method and the application of this technique for linear equations

Kwill be discussed here; note that this method may only be used

with a uniform mesh in the y-direction. The conditions usually

associated with equation (2.1) are: (1) an initial condition

specified at sane initial station, say x - 0, according to

u(O,y) = f(y) and (2) boundary conditions at two y locations,

say y = a and b. Here a and b may be finite or infinite and

-. normally either u, 2 or a linear combination of both are given

.ay

S- . ..- 6-j



as specified functions of x. Here the simplest case where

u(x,a) z gl(x) ,u(x,b) =g()(2.2)

is assumed. Derivative boundary conditions may be treated through

obvious modifications of the present development (see Appendix

r.I).

The interval (a,b) in the y direction is split into N equal

parts of mesh length h as indicated as in figure (2.1); the

subscript j denotes a typical point in the mesh. Assuming that

the solution is known at x z xi 1  the object is to construct

the solution at x - x1 = xi- + k; here k is the step length

in the x-direction which may be varied as the integration pro-

ceeds. For simplicity and to avoid double scripting, define

kx xi1 l and x -1  + 7; the convention is then adopted

that all quantities evaluated at x* x and x are denoted by

a single asterick, a double asterisk and no asterisk, respectively.

Quantities at the station are known and the object is

to evaluate the unknown quantities at x.

In the Crank-Nicolson method, the partial differential

equation (2.1) is approximated at the point labelled C in

figure (2.1) which is located mid-way between the (i) and (i-1)

mesh lines and on the jth mesh line. Simple averages in the x

direction and central difference approximations for the deriva-

tives are used; both approximations are second order accurate

-7-
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and the following difference equations result at the typical

jth mesh line:

* * *
**-uj) =l(Uj~ 2u + uj. uj+ 2uj + uj. 1 )

Q**(iJ ____ u4+i2u 4+u 1  u4+l 2U+ l
i k h+ V

D * ,*

++ j+ 1.- + -+I °_) + R * °3 uj)+ 3*

+ O(h2) + O(k2) . (2.3)

Here J = 1,2,3.. .N-1 where N is the total number of mesh points

in the y direction. Equation (2.3) may be rewritten in the tri-

diagonal form

Bjuj+1 + Au+Cu = D + h2 E (2.4)

where,

A " + "h2R - 2h2  (2.a)

1 e + hP , (2.5b)

C - 1- (2.5c)
h h:.:. "-2"h2;" uj+l (l+ I"T ) P ' uj (I' P

Di * * g* +P2 ) j
- (-2 + h2R + Q (2.5d)

It is possible to write the leading order terms in the trunca-

tion error Ej in two different but equivalent ways. In the

-9-
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first method, the error is expressed in terms of the partial

derivatives of the dependent variable u; here and in the subse-

quent methods discussed in this study, the point at which these

derivatives are evaluated will be standardized at the point on

3the Jth mesh line (y - yj), midway between the current and

previous solution plane. It may be shown through the use of

Taylor series expansions at the point (x**, yj) that

k2,,3 k2  ;2 32U
742. + 2x

+ h2 34U + h2  * 33U + (.+ " T " " "' (2.6)

A second for of the truncation error is in terms of central

Sdifference operators according to,

El  ; - 1x6 3Uj + .{(6Q2 x + 2(ux xQ *)(6 u1

+ 6u7 + .p y63uJ + ... (2.7)

Here 6 and P are the usual central difference operators and the

subscript indicates that the differences are to be taken in

that particular direction. Upon neglecting the leading trunca-

tion term, the matrix associated with the system of equations

(2.4) .is tridlagonal and a number of direct methods of solution

-10-
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are available; a particularly efficient method is often referred

to as the Thomas Algorithm (Appendix I). For linear problems,

equations(2.4) can then be solved directly to give the solution

at x = xt; the algorithm may then be applied again to obtain

the solution at xi+, and the computation proceeds in the x-

direction in a step-by-step manner.

2.2 The Keller Box Scheme

The basis of this method is to introduce an auxiliary

variable v and to rewrite equatioz (2.1) as the following

set of first order equations:

v u (2.8)
ay ,

Qua + Pv + Ru + F (2.9)
ax ay

Equations (2.8) and (2.9) are then approximated at point A of
I

Figure (2.2), which is the center of the box formed by points

(j-,i), (,I,i), (J,i-1) and (j-l,i-l); simple central differences

are used for the derivatives and simple averages for v and u.

4 Using the notation of the previous section, quantities evaluated

at x1, xi and xi are denoted by a single asterisk, a double

asterisk and no asterisk, respectively. The results for

equations (2.8) and (2.9) are

-11-
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~*
U. U j.. . U (Vj + -

+Uj--2 = (vj + v i + vi_ 1 + Vi-l) + 2 '2

(2.10)

".Q.

!! (j j. - u J - I1 =W-]i (vi + vi -I .1 - 1)

P *(2.11)
+ i ( +vj+vj .1+v l ) 4 ulju 1+uj_1 ) + 'j -"

A similar procedure is used to approximate (2.8) and (2.9) at

the center of the upper box labelled B in Figure (2.2) and the

results are,

+ +2 'T(= + + v j+l + vi + vi) 2

(2.12)

24~i (Uj+ + uj u~ 1 -i)*~ (V~ + + - -v)

II 
(2.13)

It is worhwiljl+e. not thtti+praha eraiy7+ * *J

adopted for equations for which the use of a non-uniform mesh

in the y direction is desirable; however, In what follows, only

the uniform mesh case will be considered since this is the case

of Interest in this Investigation. Keller (1970) prefers to

-12-
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solve the linear set of difference equations in the form of equa-

tions (2.10) and (2.11). However, following a procedure simi-

lar to the technique suggested by the work of Ackerberg and

Phillips (1972),the set of difference equations may be written

as a single tridiagonal matrix problem which may then be solved

by a direct method. This procedure is more efficient than the

procedure used by Keller (1970) and moreover for comparative

purposes its convenient to perform the reduction to the tridiag-

onal form here. This reduction is carried out as follows.

Equation (2.10) is used to eliminate the auxiliary variable

v_ 1 in equation (2.11); the resulting equation contains vj, uj U

and uj. 1 and will be denoted as equation (A). A similar pro-

cedure is used to eliminate Vj+ 1 in equation (2.13) using equa-

tion (2.12); the resulting equation is termed equation (B)

and contains vj, uj and uj+i. Equations (A) and (B) are then

combined to completely eliminate the auxiliary variable v.-

from the system; the result is:

Bu + A u + Cu D + h2E, (2.14)
SJ+l i Ji Jj-1 Di+ 2E

where E iis the truncation error. The coefficients in equation
1 (2.14) are

h *-2-* h2  h2P**

(2.15a)

-13-
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B i h , h2  e h2Q**B" yj P - i + F R j - Qj +1 (2.15b)

7-Cji~ P..~ 1 - h2* (2. 15cO

J-** 4* * - k ** 4

4.h2 (F +{ - u{-,- ( , - P)

h I2  * * hT (Rj*i + R*) + (J + J4

+h h2, h2 **
- +, (1 +Q ,j.,., + j (2.15d)

(1 h *+ h2  h2+ Ul_ I 1 T Pi-i. T Rl-,I + N Qji, .

It may be shown that the leading term in the truncation error

in equation (2.14),related to the partial derivatives of u

evaluated at the point (x**.yi). is

a"ax T ax a y =axa3y -,

-3U k+ V (2 au + o9j h2 a4U
wx T a x 2x T aI. j

(,p**% a3u h2  (2.16).
.T j I = T Ay j

An alternative form for Ej in term of finite-difference opera-

tors is,to leading order,

-14-
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= - -I'S(62U) ( 62 Q )Mp6 u)

+ h. (Uy'yu7)(62U*) + 1 (uy6yQ7)(Iy6y(UX6xU*)u))

+ -+ yy ) {(62Q)(U6u + 2( 6XQj ))(62U.-

1 64 (I ** ** (U R.)6 2

(2.17)

Here 6 and u are the usual central difference operators and

the subscript indicates that the differences are to be taken

in that particular direction. Upon neglecting the leading

truncation terms, the tridiagonal problem in (2.14) may be

readily solved directly using, for example, the Thmas Algorithm.

The truncation errors associated with the classical Crank-

Nicolson scheme and the Keller (1970) box scheme are compared

in table (2.1) and (2.2). Referring to the x and y directions

as the marching and spatial directions respectively, it is

convenient to isolate the errors associated with the approxi-

mations in each direction. In table (2.1) the truncation

errors which originate from the approximations in the marching

direction are compared; such errors are defined to be those

-15-
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containing partial derivatives with respect to x. It may be

observed that the first group of error terms are identical to

leading order but that the Keller (1970) method contains an

additional group of error terms O(h2). For this reason, the

Crank-Nicholson method apparently has an advantage over the

Keller scheme in regard to the accuracy of the approximation in

the marching direction; this point will be rec.onsidered subse-

quently.

Consider now the leading order error terms arising from the

approximations in the spatial direction which are compared in

table (2.2); these same error terms arise in the approximation

of the two-point boundary value problem,

d2u ddy + P(y) - + R(y)u + F = 0 u(a)=A, u(b)=B , (2.18)

by either the classical method or the Keller method. This prob-

lem has been considered by Walker and Weigand (1979) who also

derive an improved technique. Note that in table (2.2) the

first and second error terms are smaller by a factor of one-

half and one quarter, respectively, as compared to the corre-

sponding terms for the Crank-Nicolson method; however, the Keller

scheme contains an additional third error term O(h2 ). A general

conclusion that may be inferred is that neither the Crank-Nicolson

or the Keller method may be considered superior to the other

-17-



insofar as the approximations in the spatial direction are con-

cerned; this conclusion has been extensively verified for two

point boundary value problems by Walker and Weigand (1979).

It is worthwhile to remark that the errors in table (2.1)

and (2.2) are not independent. For example, for the ordinary

diffusion equation,

-u a2u
a- a2U 

(2.19)

the additional error term in the Keller (1970) method in table

(2.1) may be combined with the first term in table (2.2) and

the total truncation error is

k2 a3u h2a~u + ... (2.20)-

The corresponding error for the Crank-Nicolson method is

k2 a3U h

and it may be observed that the spatial error is smaller than

for the Keller method but of opposite sign. The total error will

in general depend on the particular problem under consideration

and in particular on the sign of each of the error terms and

how they combine.

-18-
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At this stage, it appears that the total error term asso-

ciated with the Crank-Nicolson scheme can be expected to be

slightly smaller than for the Keller (1970) scheme because of

the additional error terms associated with the latter scheme.

However, a number of example problems will be considered in

Chapter 4 and 5 to investigate this point since it appears at

this stage that a general preference for the Crank-Nicolson

method would be marginal at best.
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3. TWO IMPROVED METHODS FOR PARABOLIC EQUATIONS

3.1 Method I

Consider the grid configuration of figure (2.2); at any

fixed valpe of x (the marching direction) and at y,= Yj + Bh,

the following expressions may be written for u, au/ay and

92u/ay2 (Walker & Weigand, 1979):

u(x,y 8) - + + 2 6 + oe- - 6. + (3... 1u(x~yj),

(3.1) :

au - , ,+,y 1 + +2 63 ...}u(x,y.),

(3.2)

a2U (62 + op 63 + 64 .. j(Xy1

(3.3)

Here 6y and v are the usual central difference operators and

the subscript y denotes an operator in the y direction.

The general linear parabolic equation (2.1) may be rewritten

according to
w

.u L(u) , (3.4)

where the operator L(u). is defined by,

-20-
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L(u) ax+ P r + Ru + F (3.5)

Using the notation of the previous section, quantities evaluated

at xt, xi and xi are denoted by a single asterisk, a double

asterisk and no asterisk, respectively; equation (3.4) is then

approximated at point B of figure (2.2) according to,

Q+ *u J* L(u) + L(u) (3.6)Qj 1 -Xlj j l + i

Note that the error term has been omitted for the moment in

equation (3.6); however, this term is associated only with the

simple average on the right side and is O(k2). The principle

difference between the two methods developed in this section

lies in the approximation to the marching derivative au/ax.

In method I, a central difference approximation is used

along the line y = yj+, and this gives,

au I:. **= (3.7) .

Equation (3.1) may now be used to relate uj+ and uj+ to

values of u at points in the mesh. Using the first three

terms in equation (3.1) leads to, for example,

-21-
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Lq

U =3u 1 +6u - uJ_ 1  (3.8) -

where the omitted error terms is O(u 63). Combining these
y y

approximations results in,

** [3j + 6u -uj I  3u +6uJ 8ki
* * -k

= "fuj+l "2uj + uj. 1 + - 2n + .1)
hP + h u

loe o tpitAo ue(.)t obtainL

+ J

+ (3u + 6u j (-.1 )

R..

+ -ft13u + + 6 " uj -1) + Fj+1" (3.9)

A similar procedure is applied to equation (3.4) in the.

lower box at point A of figure (2.2) to obtain

qJ1'l* I.1 .1"l +LuIJ(.0

Using a procedure analogous to that leading to the approximation

(3.9), it may be shown that,

-22-



Ui~l 6uj+ 3u~l +- + 6uj + 3u* 1

(u4 2u l +J1 2uj + u>] (.1

R R*
+.k.(-uj+1+6uj+3uj_,) + .4i (-U ++6u3u 1)+F7

Equations (3.9) and (3.11) may be combined to form a set of

algebraic equations of the form,

Buj+ +Au +CIUj- 2 (3.12)

where,

Aju -2 -(jj-jj + --. ( ++Rj~j) - (Q + Q~

(3. 13a)

B. + h*h + r~ h2 (3Q* h2**

(3. 13b)

h2*=1 h h2* 16(* 3

(3. 13c)

Dj z-h 2(Fj+ + Fj -'2- hP -* p

* 3h2  3h2  *

+ (Rj + Rj~) + -W(Q~ + Qjj)

* -23-



S-uj +i(I + 2- P J+j + Tr (3 + -1 + 3jg -

. *h h2  ,. h2  •
-u 1 0 h-T - Tr (Rj~j - 3Rj~j) - U2 (Q**j - 3Q))

(3.13d)

In equation (3.12),Ej is the total error term associated with

• the difference approximations. After some algebra it may be

-. shown using Taylor series expansions that the leading truncation

error terms in equation (3.12),related to partial derivatives

of the dependent variable at the point (x**,yj), are

E a3u t + h2 ( 2J u +q 32U aq 32 u
5ax- . y T a + +

+ k2 ( + 2 -g
ax ax ax a2U Ij

h2 a4U h2  a3u + h3  ** a3uI
-Ij 2 y a-YI (yJ )Yi

(3.14)

A second form of the truncation error is in terms of central

- difference operators according to,

** *

E + ( Q*)pu) + hk (Vyji 62j ~ x xj U 6yJ xxj yy x j

+ ( 6yQj )(uy6y(x6xuj ) )

+ 1 ((x2Q**)( 6 u') + 2(p 6Q*)(6 2 u))
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64 1* 63U

(3.15) -

Upon neglecting the leading truncation terms,the tridiagonal

problem in equation (3.12) may be readily solved directly.

In situations where P,R,F and Q are not analytic but

numerical functions, the required values at the midway points

must be obtained with Interpolation formulae. For the present

method this situation may be treated by replacing values of P,

R, F and Q at Yj+ andy when they appear in the development

leading to equations (3.13), by the first three terms of equa-

tion (3.1); this procedure leads to an alternative form of

equations (3.13) which is

h 3h2**+**
A -- j+1 +  j-l + -l, 3-16a)

3h2  * ** **
(Q+ I + 6Qj - Qj.) , (3-16a)

h p~+ * h2  -3

Bj =1 +K-(Pj+l + 6Pj - Pj+l + 6R

- .(5Q~ Q 3Q**1 ) ,(3-16b)

C-l h -6 3 h(2 R 5)Cj I+ Tr(Pj+1  -6j 3j_ - U j+l - 6j Sj-l)

+ M (3Q 1 - 6Qj -5Qj 1). (3-16c)
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D h2 + 6Fj + j" *-

u I i 'j+ Fji I u;[. . -

+ h2 (Rj~l - 6Rj +R11_) + TW~ (Qj+l + 6Qj + Q_)

[r h **r h2

u1+ I + R3Pj1  + 6Pj1  +P + SRj + 6Rj.
*~ ~ h h_* *

+ -2  (Qj+ 1 + 6Qr - 3Qr.) - u- 1 -(Pj+l - 6Pj -3Pj 1 )

h2** * h2  3lf fl
- (3Rj+I-6R -R_)- (3Q2k (3.16d)

Note that the functions in equations (3.16) evaluated at x

may be evaluated at the points in the current and previous

time plane through use of the simple average. For example,

P (P + P (3.17)

3.2 Method II (Slant Scheme)

An alternative approach to method I may be considered where

the approximation of the derivative in marching direction is

modified. The basis of the method II is to approximate the

differential equation at the point x = x and y * yj which is

the same location as for the Crank-Nicolson method. A central

difference approximation along the line y =yj is used for the

1

S!
-26- -1



h, .

x derivative as in the Crank-Nicolson method; the new feature

is that the operator L(u) is averaged along a diagonal line

intersecting the midpoints of the mesh at x* and x as illustrated

in figure (3.1). This procedure results in the two approxima-

tions,

Q= 1/2 L(u) + L(u)J . (3.18a)

and
t*

Q F = 1/2 [L(u) + L(u) (3.18b)

where the omitted error terms are O(h2,k2 ). Equations (3.18a)

and (3.18b) are now combined into a single equation

* II

2Qj = L(u) + L(u) I + L(u)I.I

(3.19)

Finite difference approximations in the spatial direction are

used which are identical to method I of the previous section.

The approximation in the marching direction is simpler and

potentially more accurate since no errors in the spatial direc-

tion are incurred.

Writing equation (3.19) in finite difference form, the

following tridiagonal problem is obtained,

Ajuj + Bjuj+ I + Cjuj.- D + h2E (3.20)jj~~~~ j + ~ hE

-27-
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n O*

i1 -1/2 i x
Figure 3.1. Grid configuration f or the Slant Scheme(method II).
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where,

h** -* 3h2  * * 2h1 *
A = -2 Pj+ - P ) -+ 8(R + Rj _) Q Q -

(3.21a)

.h h* ** **

Bj = + y P + Tr (3Rj+j- Rj. ) (3.21b)

1 - _j - T6- (R~ - 3R7~j) ,(3.21c)

Dj =h2 (F* +F '-)

h p32 + 2h2 -

-uj+ 1 1 Pj+ +"- ( P _ -- Rj. Rjj +

• + h** h2 )

-- -11 h h2 (112 - 3Rj-* . (3-1d

It may be shown through the use of Taylor series expansions,

that the leading truncation error terms in equation (3.20)

related to derivatives of u at the point (x**,yj) is,

E.=h2Q~ 3 ~Qa ~ ~ k2Q. *aJ U k2 22 xU a2U 1 3

+h 2 au + Q a2u . _2u)*+
B y x ya 2  ay 3yax T -aY

h2  , ;33ul** h3  3 **
+ (- hj " (3.22)
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A second form of the truncation error is in terms of central

difference operators according to,

S2**" 1 62 h )(6 2U**
i1 _k IIX6X(6uJ ) + NY(V 6 u

IT + (P (i Q 6 * Q)(P 6 (P~ a u**))
yy y y x x

Ej

+& Uxjx. j + l (xQ6 )(pxi6 u ) + 2 (u xx6 Q)(62x u)}

4  u... * T4 h j y ,uj + 32 u ) .

(3.23)

Upon neglecting the leading truncation terms the tridiagonal

problem in equation (3.20) may be readily solved directly.

1K In situations where PR,F and Q are not analytic but

numerical functions, the required values at the midway points

must be obtained with interpolation formulae. For the present

method this situation may be treated by replacing values of

P,R,F and Q at yj+ and yj. when they appear in the develop-

ment leading to equations (3.21), by the first three terms of

equation (3.1); this procedure leads to an alternative form

of equations (3.21) which is,

h ** . *3h2  * ) 2h2

i -- (,1 j+, j j- ,

(3.24a)
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+ h * * * * * h 2  * * * *R * *Bj~~~~~ 5 R + J63jI6j-j)* ~ ,+6R -3Rjl (3.24b)
j l6 3 j+l+6 j 3 64 j+1 j ji) 32bh * ** ** h2 -** * *
= + Pj+-6Pj -3Pj_) - 6-- (3Rj+l'6Rj-5 R-) (3.24c)

h26. 64Fj~l

Dj " T (F;Il + 6**+lj,

h+3h 2  2h2 ~ 1 +jQ

-uj+ l 1 + -e3Pj+I+6Pj PjI ) + -a _5j16j- ,
+1 h3*+6 ~ h2  **6R *

• -PPj+.-6Pj -3Pj - (R+-6R -R. )
J- l .- J-

(3.24d)

Again equation (3.17) may be used to relate values of P, Q,

R, F at x to values at x and x

The truncation errors associated with both improved methods

are compared in table (3.1) and (3.2). In table (3.1) the

truncation errors which originate from approximations in the

marching direction are compared; such errors are considered

to be those containing partial derivatives with respect to x.

* It may be observed that for method I the first groupof error

terms is identical to the corresponding term of the method II.

The second group oferror terms for method I appear to be smaller

* than for method II because method II contains an additional term

of 0(h2).

* -31-
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The leading order terms arising from the approximation in

the spatial direction are listed in table (3.2); these same

error terms arise in the approximation of the two-point boundary

value problem

d2u du.+ P(y) T + R(y)u + F(y) = 0,

u(a) - A, u(b) = B . (3.25)

This problem has been considered by Walker and Weigand (1979).

Since both method I and method II use the same scheme in the

spatial direction approximations, the spatial error terms are

identical.

It is also of interest to compare the error of the present

methods to that associated with the Crank-Nicolson and Keller

methods. First consider the error associated with approxima-

tions in the marching direction. Referring to table (2.1) and

(3.1), the first group of error terms for all four methods may

be observed to be identical. The improved methods and the

Keller Box Scheme have an additional second group of error terms

not present in the Crank-Nicolson method. For this reason, the

0 Crank-Nicolson method appears to have some advantage over the

improved methods in regard to the accuracy of the approximation

in the marching direction. Note also for improved Method I

that if Q term is a constant the second group error terms

-33-



associated with method I will vanish; however, method II and

the Keller's method will still contain a term 0(02); note that

the sign of this remaining term is of opposite sign in method

II and the Keller method.

In regard to the approximation in the spatial direction

Walker and Weigand (1979) have shown that the improved tech-

nique is more accurate than the existing methods. Note that

- in table (2.2) and (3.2) the first and second terms of the

improved methods are one-half and a quarter, respectively, of

the corresponding terms for the classical method. In comparison

to the Keller Box method, the first two terms are identical;

however, the third term in Keller's method is an order of mag-

nitude larger than for the improved methods. For this reason,

it is expected that the improved methods will,ln general,pro-

duce more accurate results than either the Keller or classical

method insofar as the approximation associated with spatial

direction is concerned.

On the basis of the error terms listed in tables (2.1),

(2.2), (3.1), and (3.2) as well as the results given by Walker

* and Weigand (1979) for two point boundary value problems, the

improved methods appear to offer improved accuracy over the

Keller (1970) method and possibly over the Crank-Nicolson method.

However, the situation is complicated in the general case by

-34-



the fact that, although a given method may have smaller indi-

vidual error terms, it may not produce more accurate results

on a specific problem. This is because in a particular problem,

the error terms may combine through differences in sign between

individual errors in each error term to produce a smaller over-

all error. For this reason it is important to consider a num-

ber of test cases and this is carried out in the next section.
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4. LINEAR EXAMPLE PROBLEMS

[1 4.1 Linear Examples

Three linear example problems are considered here to cam-

pare the accuracy of the four methods discussed in the previous

Ii two chapters; the three example problems are listed in table

(4.1). For all four methods, the truncation terms were neglec-

ted and solutions were calculated with a uniform spatial mesh size,

* h, and uniform marching mesh size, k (the particular mesh values

are listed in table 4.1). The exact solution for example 1 is

not known, and to produce an 'exact' solution as a basis of

comnparison, example 1 was solved by the Crank-Nicolson method

with a set of extremely small mesh sizes. The accuracy com-

parison for both examples 2 and 3 are based on the quoted exact

* solution in table (4.1).

4.2 Calculated Results

In figure (4.1), the root-mean square errors (defined as

the square root of the sum of the squares of the error at each

mesh point divided by the total nuber of mesh points at a

u given time station) for example 1, are plotted; method I and

method II give better results than both existing methods as

time increases. However, method I I (the Slant Scheme) performed

slightly better than method I. According to the error terms
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given in chapter 3, method II appears to have an extra leading

error term when compared to method I. In general, method II

might be expected to under-perform method I; however, the situ-

ation is somewhat more complicated than this. It appears that

the reason method II gave a more accurate solution in example 1

is that the error terms combine through differences in sign with
hQ. a3u

the extra error term, namely, !f- Ty'axij to produce a

1 smaller overall error.

In example 2 (refering tofigure (4.2)) method II produces a

better solution than the other methods; method I and Crank-

Nicolson method are about even but both under-perform method

II; again; the Keller Box scheme produces the least accurate

results. Example 3 is a simple unsteady heat conduction equa-

* tion; for this equation method II reduces to the Crank-Nicolson

method. The root-mean-square error is computed and plotted on

figure (4.3); the results for this problem shows that Crank-

Nicdlson method performs slightly better than both method I

and',Keller Box scheme.

For the three linear examples considered, both improved

e methods are always clearly superior to the Keller Box scheme.

These results are generally representative of a number of other

linear problems with various values of the mesh lengths which

were considered but not reported here. Method II appears to
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give superior results but it appears that a general prefer-

ence for Method II over either Method I or the Crank-Nicolson

methodis still not conclusively clear. In the next section, the

various methods will be compared for some nonlinear problems.

-
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5. NON-LINEAR PROBLEMS

C 5.1 Introduction

In this chapter the most common type of non-linear para-

bolic problem will be considered; this is the quasi-linear para-

bolic equation which is of the form of equation (2.1) but for

which the coefficients QPR and F also depend on u and au/ay.

For all of the four methods considered thus far, the method of

* approximating the non-linear differential equation is similar

to the linear problem; the distinguishing feature from the linear

case is that the finite difference equations are now non-linear.

For this reason,the solution must be obtained iteratively at

any x station; this is carried out by first estimating values

of u at the current station to linearize the finite difference

* equations and thereby produce new estimates for u; these values

are used to re-estimate the non-linear terms in the finite

difference equations. This iterative process continues until

convergence is obtained. Another common procedure for handling

the non-linear difference equations is to use Newton lineariza-

tion; this approach generally accelerates convergence of the

* iterative scheme at any x-station at the expense of increased -

algebraic complexity in deriving the difference equations.

The application of the new methods developed in this study

to the non-linear type of problem is best illustrated by
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example. In the next two sections two non-linear example

problems are considered and the performance of the methods com-

pared.

5.2 The He:ayth Boundary Layer Problem

The steady incompressible boundary layer equations for

two-dimensional steady flow are (see for example, Schlichting,

1968, p. 121),

au au.. = dgp a2u
Pu +pVy - dxLu + a' (5.1)

au+2V 0  (5.2)
4ax ay

It is convenient to introduce the Levy-Lees variables &,n (see

for example, Blottner, 1975) given by

de = upUdx , (5.3)

dn = pU(2 )- dy , (5.4)

and a stream function

S= V f(,n) (5.5)

Here U is the mainstream velocity outside the boundary layer

and p,p are the fluid density and absolute viscosity. Upon

substitution of these transformations equations (5.1) become,

a3f f +a2f +l af)2 2t raf a2f a2f a9f
'an (3n I an an 'an -3 •

(5.6)
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where the function O(c) describes the pressure variation

in the mainstream flow outside the boundary layer. The boun-

dary conditions are,

0 aff. 1 (5.7)]f( ,)-. =0,o ,,
I CO anI

which express the impermeable wall and no slip condition at the

wall, in addition to the condition that the velocity approach
n

the free stream velocity at the edge of the boundary layer.

In this section,the two inproved methods are applied to the

Howarth (1938) boundary-layer problem and the performance of

the improved methods are compared with existing methods. This

problem describes the development of a boundary layer in the

1 presence of an adverse pressure gradient and is selected here

as a particularly challenging test case. Historically this

example flow also has been used previously by Keller and Cebeci

u(1971) and Blottner (1975) as a test case.
For the Howarth (1)38) linearly retarded flow, the main-

stream velocity distribution is,

U 1(5.8)

and in this case

= . . . (5.9)
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It is convenient to rewrite equation (5.6) as a second order

system of equations according to

2u u 2 u a~f a)u
- = + (f + 2c 2) 2- u 2 + 0,(5.10)

af
5n= U,

with the boundary conditions,

f(C,0) = u(UO) = 0 , u(C,=) 1 . (5.11)

In equation (5.10),e is the marching direction and n is the

spatial direction. At ).0 equations (5.10) reduce to the

ordinary differential equations,

d2U du df (5.12)Tnr+ f 3_n= 0 , n- u. 5.2

which is the Blasius equation describing the boundary layer

flow on a semi-infinite flat plate; the numerical solution of

this equation provides the initial condition for the equations

(5.10).

For all four methods to be described here, a uniform mesh

in the n direction was used with h being the mesh size. Let

N-i be the total number of internal mesh points in the boundary

layer; the value of n, where the mainstream boundary conditions

in equation (5.7) were applied as an approximation is denoted

byL = Nh. In practice a value of t = 8 was found to be large

-46-



enough to ensure no change in the solution. The systems of

equations (5.10) and (5.12) are non-linear; at any stage in an

iterative procedure at each E station, once an estimate of u

is available, the second of equations (5.10) or (5.12) was

rintegrated using a trapezoidal calculation according to

f fj-1 + 'T (u, + uj- 1) (5.13)

for j = 1,2,3,...,N. The differences in the four methods

described here are associated with the approximations to the

first of equations (5.10) and (5.12) and these will now be

described.

Crank-Nicol son Method

In this method, to calculate the initial profile, central

difference approximations at each internal mesh point nj = jh

are made; this classical technique (Walker and Weigand, 1979)

leads to the tridlagonal matrix problem,

B uj+1 + Aj uj + C uj. 1 = Dj , (5.14)

where

A. = -2, B. = I +hfi, C = I - hfi, D 0 (5.15)

In equations (5.15), the fj are evaluated either from an initial
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guess or from a previous iterate. At any stage the tridiagonal

problem for u in equation (5.14) is solved by the Thomas algor-

ithm and the f. are then obtained from equation (5.13). The

iteration was continued until two successive iterates agreed

to within five significant figures at each internal mesh point.

After a converged solution is obtained at 0 = , the marching

procedure may be initiated to advance the solution to { = k

and thence to c ik, 1 2,3,4...; here k denotes the march-

ing step.

The first of equations (5.10) is approximated at

+ k/2 and at n = nj; using the approximations described in

section (2.1), the first of equations (5.10) may be written in

finite difference form as a tridiagonal problem of the form

(5.14) where now,

B= 1 T (fi f j + T* * ff (5.16a)

1- I (f+f h (f(f-~ h (5.16b)

Jii

h2  h* 2 *

A -2 - B (u.+u*) ui (5.16c)

0j. -u., [+ (fj+f) *(f .f)

[2f h2  ** U* +2h12**1

* [I h ( * -h 4**(fj-*)l -2h2o**.
~ ~;""* ..1I1 -"*r~i~J

(5.16d)
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Here the u and f (on the right sides of equations (5.16)) are

evaluated initially from the solution at the previous step or

from the last iterate, as the iteration procedes at each C

station.

The iteration method just described is relatively slow

and the rate of convergence can be enhanced by using a standard

procedure of Newton linearization which is desnribed in Appen-

dix IV. This is merely an alternate form of the difference equa-

tions associated with the Crank-Nicolson method which may be

written (after some algebra) in the form,

Aju u +Bu C u + G + jf -+ jM. = D.

(5.17)

where,

B I.. h h * h** h(51a

A ILh 2 a "* * -58 **

Ih f h* h

h * h h * h *
+ ITu j+ jl 9uj-I-u

H = 0 , (5.18e)
j
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, 0 (5.18f)

j u+1 T~ h 7 h2

2,h 2  h2  * h2  h2 .-uj *  + T  -* )  uJ (  ' -  ui + 7 C UP

* 1 h h * 1 h* h

- h2  (5.18g)

Again uj. I , uj, uj+l and f j 1, f . fj-I are evaluated from the

previous iterate at any c station. Equation (5.17) then can

be solved by an elimination method described by Ackerberg and

Phillips (1972) which is given in Appendix III. Iteration at

each c station procedes as previously described and convergence

is decided by the same criterion; typically the number of

iterations was reduced from 8-9 at each & station to 3-4 with

the Newton linearization.

Keller Box Scheme

This method was originally described by Keller (1970) and

later applied by Keller and Cebeci (1971) to the solution of
boundary-layer flow problems. To implement the method, equa-

tions (5.12) and (5.10) are rewritten as asystem of first order

differential equations according to,
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df du df
d=u , v dL -fv , (5.19)

and

af uu = v (5.20)izf'

a..V =  ( + 2 f  v + 2Eu u- - Bu2 + a
S (f + 2c V~- v+ aE 8 2 B

To compute the initial profile, equations (5.19) are approxi-

mated at points nj+ and nj_ on either side of the typical

mesh point nj as described by Walker and Weigand (1979); the

two sets of approximations are then combined to form algebraic

equations of the form of equation (5.14), where now,

A i = -2 -4h- (fj+l - f-1) ' (5.21a)

B = 1 + h (f j+l + f.) (5.21b)

, = 1 - h (fj + f.-l), (5.21c)

D = 0 . (5.21d)

In equations (5.21), the f are evaluated either from an initial

guess or from a previous iterate. At any stage the tridiagonal

problem for u in equation (5.14) is solved by Thomas algorithm

and the f are then obtained from equation (5.13). The iteration
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K

wascontinued until tosuccessive iterates agreed to within five

significant figures at each internal mesh point. After a con-

verged solution is obtained at E = 0, the marching procedure

may be initiated to advance the solution to { = k and from

there to E = ik, i = 1,2,3,4,...; here k denotes the marching

step.

For equation (5.20), the approximations are made at

both n = nj+ and n = nj. using the technique described in

section (2.2). Using Newton linearization, it may be shown

(after a considerable amount of algebra)that the last two of

A equations (5.20) may be written in the form of equation

(5.17), where now,

h2 ** h2  h2
A - +0  k + 2uj + uj-l ) +- (uj+ l + 2u

+ u 1) + khh* )(ff J + h1 h-1

(5.22a)

h2  + h2 ** h2  (u * +B= (-4- B + (*)(uj+uj+1 ) + T C**u. + u. l )
i (T 7 Tj j+l)

(- + V . f**)(f+f) - hT - -F**(f f 1 1).2, (5.22b)h2 h2  **

Cj = ~~( + - -**)(uj+uJ l ) + E2  *(u*- + u*)

T 8  (u41  1

~*)(fj+fi1 ) + (T V E f** ( _*)-2, (5.22c)
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H h + ' )(ui+ 1 - u + Uj+ 1 - uj) , (5.22d)

Gj -(h + **)(u+l _ uj-1 + uj+ . uj.1 ) , (5.22e)

- (uj -uj. 1 + (5.22f) 

Dj = 2(u*+I - 2u + u*.I) + 4h2o **

+ h + ** [(f;+f; l)(Uju-1) + (fi++fi)(ui+-iu'))

+ (h2 S** + h2 **) (u +U j_1) + (uj+ I + Uj)2

(h2  h2 ) (u + u .1)2 + (u'. + u. 1 )2] (5.22g)

:2 i j

Equation (5.17) is readily solved by the Ackerberg and Phillips

(1972) technique coupled with trapezoidal rule of integration

given by equation (5.13). At each time step iteration is required

and the calculation proceeds in the & direction in a manner

similar to the Crank-Nicolson method.

Improved Method I

To conpute the initial profile, equation (5.12) is approx-

imated at points nj+, and nj. on either side of the typical

mesh point nj as described by Walker and Weigand (1979); the
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two sets of approximation are then combined to form algebraic

equations in the form of equation (5.14), where now,

A = -2 - h (fj+1 - f-l1) (5.23a)

B Bj Z I + 0 (3fj+l + 6f - f J-1 (5.23b)

j 1 +. j(fi+ l - 6fj - 3 fj-l) (5.2c)

D j M 0 .(5.23d)

In equations (5.23), the fV are evaluated either from an initial

guess or from a previous iterate. At any stage, the tridiagonal
4

problem for u in equation (5.14) is solved by theThanas Algorithm

and the f. are then obtained from equation (5.13). The itera-

tion continued until two successive iterates agreed to within

five significant figures at each internal mesh point. The

calculation may then be advanced in the +E direction as pre-

viously indicated for the other methods.

For equation (5.10), the approximationsare made at both

n = nj+ and n = ni_ using the technique described in section

(3.1). Using Newton linearization, it may be shown (after a

considerable amount of algebra) that the approximations to

equation (5.10) can be written in the form of (5.17), where

now,
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4 tt~-~ )(f +1-fj- 1) + t)fl

U 3 2 ** + * + (3h2  + R2+1
8(uj+1  u-1 +6u) j I-Th TO )(Uj+1 +u~. 1

- h2  +* 9h2  
(5.4a

B. hh* 3* 3 f~

h28 (5u*1 + 6u~ 3u*_1 )

-5h
2  h2 + h2  + 3h2  h2* - *)8F ~ )u~+ (32~ Tk j-

3h2 **+- 3h )u (5.24b)

Uh h 3* 13

+ h2 ** * + h h t **)(lf 3f 3f)
32 j+-6 jW-E* 5uW j+1 Yj -4 j-1

+3h 2 
**h

2 * - 3h2 R32 *

5h h28*~ (5.24c)

G. = 3h +3h E**) *u * (5.24d)
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3) (u++u 1 -(u+u +il+)-*
4j- (h i ..Uj+l+Uj+l)_(ju) 14(ilU~

(5.24e) 
- I

=Mh U)(uj+u*) + 3(jJl+U;1 )-

(5.24f)
D 4u* -2u 2u ** + (4u

j -2u - 1 - 4h2B + jkl*1-uj(fj+
l

- fj_l)+uj+1(3fj++6fj-fj_l) + Uj_l(fj+l-6fj-3fj_l)

L 4u* (fJ*l'-fj')U* (f+l6f.l

0 + - h**) +

- Uj_(f +1'6fj-3fj~) + 16 [3(u(uj+l+U_ 1 )

-u.(uj+l+Uj-l)) + 3 (u - *

jT j+1 j-ll 7 (ul u-1
*~ (u~iu *I - - + 9(U*.- )

h r [), * * *)2 1 S2,4 u ** Uj+l+Uj+j l  UjlijU~

E h 1(u ++6u +u. 1)2 + (u +6u .+u. )2 (52g

Equation (5.17) is readily solved by the Ackerberg and Phillips

(1972) technique oxupled with thetrapezoidal rule of integration

given by equation (5.13). At each time step, iteration is

required and the calculation proceeds in the E direction in

a manner similar to the Crank-Nicolson method.
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Improved Method II (Slant Scheme)

This is a similar but alternative approach to method I,

with the basic difference being in the approximation made in the

marching direction (as discussed in Chapter 3). For this

method, the initial profile is computed with the identical

finite difference approximation and computational procedure

as method I. For equation (5.10), the approximations are made

- at both n = nj+ and n = nj. using the technique described

in section (3.2). Using Newton linearization, it may be

shown that approximations to equation (5.10) are of the form

of equation (5.17), where now,

=h h* * h h*f+ f H + -F Xf +I- r
3h2  ** * 3h2  **
W (uj+ l + uj 1 + 6uj) - -1-C a (uj3+h+uj)

- ah + 8h (5.25a)

B. 2+ h _ h X* 3 f* + 3 f* 12 __ u
S T f+ 1 I+ j -T fj-l ) "  (5uj+ l

5h2  * 3h2  3h2  **'
632 l ui+1  (+ uj +"( 8 ufj+ (5.25b)
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4 k 4 fj+ r fj V

+ h2  ** (3u* +6u +5 ~ 1  h h ** 4 1 3

3 +3L 2 a** 3h2 ** 5h2 *

(5.25c)

G 3h +3h **j~ * &u (5.25d)

M - 2k + hj~ ** *

Mi 4 k T ~(uj+i+uj+.O-(ujjuj) +
(5.25f)

D 4* -2*+ 2* +* h *

* .=u.-2 -2u -4h
2o* + (-- + w i4u.f

f- f )+uj+ 1(3fj+ 1+6fj-f~ 1)+U. (j 1-f~3~-)

-L~..j~f+1 6fffj.. 1 ] _1 i3(u;(+l6fj3fl

3 j-1 2j-j+l j+lj-1) +4~j+lj+1

+ u. u2u-u. l)+q(u~u.-u.2 -1- 2 E*(u+U*U.)
3-I j-i1 j- JJj 3 33

* (5. 25g)

The computational and marching procedure is carried out in the

same manner as method I.
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5.3 Calculated Results for the Howarth Flow

The results of the calculations of the incompressible boun-

dary layer equation for the Howarth flow are described in this

section for all four schemes. There is no known analytical solu-

Ution to the problem and in order to produce an 'exact' solution,

as a basis of comparison, equations (5.12) and (5.10) were

solved by using very fine mesh sizes in the n direction and a

decreasing non-uniform mesh in & direction until five significant

figures of accuracy were obtained. The mesh size, h, in then direc-

tion is uniform throughout; however, a non-uniform mesh size, k,

is used in direction; in particular, k is uniform and equal to

ko, say,from e = 0 to e = .8; from g = .8 to E = .85, k is reduced

by a quarter; between E = .85 and = .9, k is reduced by half.

E The root mean square error (defined as the square root of

the sum of the squares of the error at each mesh point divided

by total number of mesh points for a given E station) for the

U four methods were computed for various mesh sizes, this RMS

error is summarized in table (5.1), and the results are plotted

on figures (5.1). According to the results for this test prob-

lem, the improved schemes produced more accurate results than

either the Keller Box Scheme or the Crank-Nicolson method; note

that the Keller Box Scheme performs better than the Crank-

Nicolson method for this problem. Referring to figures (5.1),
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the root mean square plots indicate Method I has the lowest

overall error of all, while the level accuracy of Method II

lies between the Keller Box Scheme and Method 1. Note that the

root mean square error increases substantially for all methods

as & -)...9; this is because a point of zero skin friction occurs

at o = .9008694 which suggests a flow separation occurs there.

In fact, with the mainstream velocity constrained to be of the

form equation (5.8), equation (5.6) contains an irregular

behavior of the form (&-co)f which is usually referred to as

the Goldsten singularity (1948). For this reason the trunca-

tion error will became large as E * CO for all methods.

It is known that the improved method of Walker and Weigand

(1979) produces more accurate results than either of the exist-

ing methods for solution of the initial equation (5.12) and the

question naturally arises as to whether the apparent better

performance of the two improved parabolic methods is simply a

result of the more accurate initial condition. To investigate

this point, all four methods were re-run but this time using

'exact' solution at the initial station (based on the solution

of equation (5.10) with a very small n~ mesh size); in this way

the error associated with the initial condition is eliminated,

and the accuracy of each parabolic schemne can be isolated,

The root mean square errors (RMS) for one set of computations
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are plotted in figure (5.2); note that the mesh sizes are the

same as was used to figure 5.1a (see table 5.1). It may be

observed that similar conclusions as discussed in connection

with figures (5.1) can be drawn from these computations.

u The velocity gradient at wall (u') and number of iterations

for selected C stations for all four methods and for the three

sets of mesh sizes considered are presented in tables (5.2)

through (5.4) respectively; in addition, a comparison is made

with the 'exact' result. The absolute magnitude of the error

for the test problem at two different C stations for grid sizes

h = .1 and k = .05 are plotted on figures (5.3). It may be

observed that the improved methods have smaller errors than

either the Crank-Nicolson or the Keller Box method; further-

3 more, method I gives slightly better results than method II.

For this example, both improved methods give an accurate

solution for the boundary-layer equations. In the next sec-

U tion, another non-linear problem will be examined.

5.4 An MHD Problem

* The second non-linear example considered here is associated

with the problem of boundary layer for flow past a cylinder with

an applied radial magnetic field (see, for example, Crisalli

and Walker, 1976). The equations governing the flow in the
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Fig. 5.3b. Magnitude of the error for HIowarth flow problem

at =.6.
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vicinity of the rear stagnation point of the cylinder are

(Leibovich, 1967; Buckmaster, 1969, 19/l; Walker and Stewartson,

1972)
2u F !!+(u-m) u+m-l au

ay
2

(5.26)

ay

with boundary conditions

2u= F = 0 at y = O, u- l as y- . (5.27)ay

Here m is a parameter which is proportional to the magnetic field

strength. In addition, y measures distance normal to the wall,

u is the velocity tangential to the wall in the boundary layer,

F is a stream function and t is the time.

The time dependent problem considered here corresponds to

that for which the cylinder is impulsively started from rest and

from this initial condition, the solution of equations (5.26)

describes the time-dependent development of the boundary layer

near the rear stagnation point of the cylinder. For small times

it is convenient to introduce Rayleigh variables f, n given by,

n y/2t , f = F/2 . (5.28)

Upon substitution of these transformationsequations (5.26)
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become,

+ (2n-4tf) - + 4t(u-m)u + 4t(m-l) = 4t au
an a

af = u (5.29)

The initial condition for equation (5.29) is obtained by takiag

the limit as t + 0 and the solution satisfying the boundary con-

ditions in equation (5.27) is

u = erfn (5.30)

In this section, the improved methods are applied to equa-

tions (5.29) and (5.26) and the performance of the improved

methods are compared with the Crank-Nicolson method. A value

of m = 3 is selected for this test case. As time increases and

te Loundary layer develops, 1:, variables given in equation

(5.28), which were introduced in connection with the impulsive

start, are no longer apprcoriate and it is convenient to switch

back to the original (y,t) variables; this was carried out at

t - .5 in all cases. A brief description of each method follows.

Method I

According to the new method described in section (3.1),

the first of equations (5.29) is reduced to a set of non-linear

algebraic equations of the form of equation (3.12) with

-73-

.. . . .S m
L h m d M 

m a m ' - u
'" "'' " . . . .



associated equations (3.13); for this test example,

Q* 4t (5.31a)

P. = 2nj - 2t (fj + f.) , (5.31b)

R. = 2t. (uj + u) - 4t*m, (5.31c)

F. = 4t (m-i) (5.31d)

Equation (3.12) may then be solved by the Thomas Algorithm in a

general iterative procedure at each time step; in this procedure,

values of uj in equations (5.31) are replaced by the values at

previous iteration and values f. may be determined by the Simpson

rule of integration (see Appendix II). Iteration continues until

a converged solution is obtained to five significant figures;

the solution is then advanced to the next time step.

For larger values of time (t > 0.5) a switch back to prin-

ciple plane (y,t) is made and in this case the first of equations

(5.26) must be solved; it is reduced to the same form as equa-

tions (3.12) and (3.13), where now,

Q. = 1 , (5.32a)

P. = (F. + F.)/2 , (5.32b)

R = (uj + u )/2 m, (5.32c)
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Fj =-l- (5.32d)

K Following the same type of procedure as described for the small

time solution, the integration may be advanced to successively

larger times.

Method II (slant scheme)

Referring to the method described in section (3.2), the

first equation of both (5.29) and (5.26) may be reduced to the

form of equation (3.20) with associated equations (3.21); here

the coefficients Q,P,R and F are identical to equations (5.31)

and (5.32) for the small time and large time solutions, respec-

tively. The computational procedure is analogous to that pre-

viously described for Method I.

Crank-Nicol son Method

According to the method described in section (2.1), the

first equations of both (5.29) and (5.26) may be reduced to the

form of equation (2.4) with associated equations (2.5). Again

the coefficients Q,P,R, and F are identical to the two previous

cases and the computational procedure is similar.

5.5 Calculated Results for the MHD Problem

There is no known analytical solution to the example prob-

lem and in order to produce an 'exact' solution, as a basis of
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comparison, equations (5.29) and (5.26) were solved by using a

very fine mesh sizes in the and n directions until five sig-

nificant figures of accuracy were obtained. The root mean

square error (RMS) for the three methods were computed for a

mesh size of h = 0.05 and a time step of k = 0.1; the results

are plotted in figures (5.4). According to the results from

this test problem, the improved methods performed better than

the Crank-Nicolson method; however, Method I solution is some-

what more accurate than Method II. This conclusion is similar

to that reached for the Howarth flow problem.
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6. SUMMARY AND CONCLUSIONS

In this study, second order finite difference methods

for parabolic partial differential equation have been studied.

Two improved methods have been introduced. The leading trun-

cation error terms are discussed and the new methods have been

compared to two existing methods, namely, the Crank-Nicolson

method and Keller Box scheme. Examples of both linear and

non-linear problems for all four methods have been considered.

In general, the new methods give more accurate solutions than

the existing methods. However, in some special cases, Crank-

Nicolson may perform somewhat better than the improved methods.

This is due to the fact that for some problems the error terms

may happen to combine through differences in sign between

individual errors in each error term to produce a small overall

error. In addition, computational results consistantly showed

that improved methods were superior to the Keller Box scheme

and often by a substantial margin. Based on the leading order

truncation term comparisons in chapter 2 and 3, and the com-

putational results, it is concluded that the improved methods

* and particularly method I are preferred for the calculation

of parabolic equations.
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APPENDIX I

SOLUTION OF THE DIFFERENCE EQUATIONS

1. The Thomas Algorithm

In chapters 2 and 3, the finite difference approximations

for the existing methods and the new methods, lead to a tri-

diagonal matrix problem of the form,

Bjuj+1 + Aju. + Cjuj+ = D . (A.1.1)

Here j = l,2,3,...,n-l and equation (A.l.l) holds at each inter-

nal mesh point. In the simplest case where the boundary con-

ditions are given by equation (2.2), the values of u are given

at the boundary according to

u0 gl(x) , n = g2(x) (A.1.2)

For all methods A., B., C. and D are known.

uThe solution of equations (A.1.2) may be obtained directly

through u. .of a solver generally referred to as the Thomas

algorithm. The procedure is as follows. Define two arrays,6

and F according to
B-

F= 0 , Fn+l A n+l F (A.1.3)
n+l n+l n
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4

[I

6 n+l -C n+l n

S60 = A n+l Cl Fn  (A. 1.4)

The solution to equation (A.1.1) is then obtained by back sub-

stitution in

uj = Fjuj+ l + , F (A.l.5)

with j = n-1, n-2, ..., 1 since un is known.

2. Derivative Boundary Conditions

When one of the boundary conditions involves a derivative

condition, the above procedure must be modified. Suppose that

D_ g3(x) at y = b , (A.l.6)

instead of the second of equation (A.l.2). There are a number

of methods available for the approximation of equation (A.1.6);

-the method which is believed to be the most satisfactory and

which preserves the overall second order accuracy in h, is to

approximate the derivative in equation (A.1.6) with a sloping

difference according to,

au =llun-l8 unl+9un.2-2un-3 3)
+ O(h ) . (A.1.7)

3y 6h
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Substitution in (A.1.6) leads to

IllUn-1 8u nl+9un-2- 2un-3 =6hg3(x) (A.1.8)

This relation rray be combined with equations (A.1.3) to (A.1.5)

U to compute the value of u at y4- according to

un=( ) (6 -(l 18n +9F - -F n-2F F +6n 3 -F -) 2 n 3
u n 1 -18F -1+9Fn-iF n-2 2 n-iF n-2 Fn-3

(A.1.9)

This value may then be used to initiate the back substitution in

equation (A.1.5).
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APPENDIX II

SIMPSONS RULE FOR INTEGRATION OF INDEFINITE INTEGRALS

In the solution of the boundary-layer problems considered

in chapter 5, it is necessary to evaluate an indefinite integral

of the form,

f(yi) = u(y)dy (A.2.1)

This can be accomplished with good accuracy 0(h
5) through the

use of Simpson's rule. To calcula e an integral over the first

step, the starting formula is,

f l u dy = h-{9u + 19uI - 5u2 
+ u3 } , (A.2.2)

and successive values of f are calculated according to

fi+l fi-I + {Ui 1 + 4ui + ui-l} (A.2.3)

for i = 1,2,3....
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APPENDIX III

THE ACKERBERG AND PHILLIPS (1972) ELIMINATION METHOU

Consider a system equations of the form,

Ll Aji uj+ 1 + Bju. + C uj_ 1 + Gjfj+ 1 + Hjfj + Mjf : j,

(A.3.1)

with the additional relation,

j+ =j + h (uj+uj+l) ' (A.3.2)

where j = 1,2,3,...,n-l. This system may be solved directly

by the following algorithm described by Ackerberg and Phillips

(1972). Assume the following relation,

Uj+l = aj+l + aj+lUi + Yj+fj ' (A.3.3)

and substitute equations (A.3.3) and (A.3.2) into (A.3.1); this

procedure results in an equation of the form,

uj = aj + 8juj_1 + YjfJ- 1 (A.3.4)

where the following recurrence relations are obtained:

hh h
aj = D j-jaj+- 2"Gjcj+)/(Ajaj+1 +B.+ hG.+ H.+ ejA~

+ GjG+a + h2G j+ (A.3.5)
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- ( h h h h2  h
C~ G. I1+~TGj~yj+l)/(Ajoj++Bjh%+ IT Hj

i° .. Pj j jjl

+ Ajyj+l +  -Gj+l y+ 1) , (A.3.6)

=j -(GH+N+Ajyj+1+ Pjj,/Ajj I+hG+ hj j~~h h2

+ h 1jq*+ - Gjyj+1 ) (A.3.7)

The values of Aj., Bj, C., and 0. are known. In addition, the

values of u at the boundaries are known, and the boundary condi-

tions given by equation (2.1) my be expressed as,

uo  gl(x) and un 
= g2 (x) . (A.3.8)

At y y Yn a comparison of equation (A.3.3) and the last of

equations (A.3.8) gives,

n 9=g2(x) On 0  and Yn 0  . (A.3.9)

These relations may be used to initiate the calculation of

On and yn' through the use of the recurrence relations (A.3.5)

to (A.3.7). The solution of equations (A.3.1) and (A.3.2)

is then obtained by substitution in equation (A.3.4) with
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APPENDIX IV

NEWTON ITERATION

When the difference equations are non-linear, they cannot

be solved directly at each time step and iteration is required.

," Convergence may be accelerated through use of Newton iteration

which is Implemented as follows. Suppose the unknown variables

are f and u which can be expressed as,

f, fn + 6f (A.4.1)

-um  + dum . (A.4.2)

The superbars denote the results of a previous Iteration or the

solution of the previous marching step in the case of the first

iteration. Suppose that a non-linear term of the form,
U...

fmum + f + u) , (A.4.3)f~Mm -m

arises in the difference equations. Carrying out the multi-

plication gives

fmUm m(UM) +  
.fm) 

+ 0(82)• (A.4.4)

The terms 0(62) are neglected and substitution for 8u and

B1mf from equations (A.4.1) and (A.4.2) yields,

-87-

. ao-..



Wet U w umem) A45

or

sfu+uf-fu(A.4.6)
fmu, u +~ umm fmm.

This is the basis of Newton process for linearization of the-

difference equations.

IS-,
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